

Comparison of Non-compartmental Analysis Estimation and Population Pharmacokinetic Predictions of Exposure Changes as a Function of Renal Impairment

Mariam Ahmed, Ph.D. Mentor: Islam R. Younis, M.S, Ph.D.

Office of Clinical Pharmacology Office of Translational Sciences US Food and Drug Administration

Disclaimer

The opinions expressed in this presentation are those of the authors. No official FDA guidance should be taken or inferred from this presentation

Research Objective

To compare exposure changes as a function of renal impairment utilizing

- 1. Non-compartmental analysis estimation
- 2. Population pharmacokinetics predictions

Methods

- Renal impairment classification was based on C-G equation as follows:
 - Normal: $CrCL \ge 80 \text{ mL/min}$
 - Mild: $CrCL \ge 50-<80 \text{ mL/min}$
 - Moderate: $CrCL \ge 30-<50 \text{ mL/min}$
 - Severe: CrCL<30 mL/min</p>
- Submitted PopPK models were used to predict observed AUC for each subject enrolled in RIS
 - 1000 simulation per subject
 - The non-parametric prediction interval for AUC GMR was calculated by computing the 5th and 95th percentiles of the model-based predicted GMR based on the 1000 simulations

Potential Factors for Differences

- Fraction excreted in urine.
- Inclusion of RIS data in PopPK model development
- Number of subjects with renal impairment in phase II/III trials
- Covariate model
 - Inclusion of correlated covariates

Conclusions

- In general, there is a good concordance between PopPK and NCA results
- Inclusion of correlated covariates in model development increases the discordance between PopPK predictions and NCA analysis

Acknowledgments

- Mentor: Islam R. Younis, Ph.D.
- Jeffry Florian, Ph.D.
- Rajnikanth Madabushi, Ph.D.